

Page N°: 1/7

Job File No.: 181202/65647-1739-1/M-NK-2015

INSPECTION REPORT

In pursuance of an order for inspection given to us

BY : "CARBO ONE LIMITED "

TO INSPECT : Coal 0-50 mm, grade "Washed SS-coal" (as declared) in rail cars

BY : Sampling and Analysis

AT : Bachatsky open cut, Kemerovo region, Russia

ON : 3 January 2015

WE HEREBY REPORT that we have performed sampling and analysis of the above mentioned commodity.

<u>SAMPLING:</u> Manual sampling as per ISO 18283 5.3. from the tops of the rail cars: Sampling material in motion, on systematic known mass intervals basis. Increments were collected from freshly exposed surface, on a mass interval basis, with fixed increment mass. Manual Sampling method was agreed with the SGS Principal, as sampling by other methods was not possible.

1. ANALYSES WERE PERFORMED IN SGS LABORATORY:

1. Proximate analysis was performed in SGS laboratory (Accreditation Certificate No. POCC U.0001.21Ty38, valid till 22.09.2016) according to ISO Methods with results as follows:

Basis reported	Total moisture, % ISO 589-2003, ISO 5068-1- 2007	Ash, % ISO 1171-97	Yield of volatile matter, % ISO 562-98	Total sulphur, % ISO 19579-92	Gross calorific value, kcal/kg ISO 1928-76
As Received	6.7	7.6	17.4	0.20	7203
Air Dry Basis	1.2	8.1	18.4	0.21	7622
Dry Basis		8.2	18.7	0.22	7718
Dry Ash Free			20.3	0.24	8407

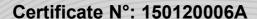
Net Calorific Value (as received) was calculated in accordance with ISO 1928:2009 (Pt. 12.2.2.1 и Pt E.3.3): 6984 kcal/kg

2. Screen test were performed in accordance with ISO 1953 with results as follows:

Nominal Top Size (mm)	+50	25-50	13-25	6-13	3-6	1-3	0.5- 1	0-0.5
Yield (%)	6.3	14.6	17.2	18.8	8.6	13.8	5.9	14.8

SGS Vostok Limited

312-24, Ordzhonikidze Street, 654005 Novokuznetsk


Russian Federation

t: +7 3843 39 16 81, 39 16 82, 39 16 83 f: +7 3843 39 12 42

e: ru.novokuznetsk@sgs.com

www.ru.sgs.com Member of SGS Group This document is issued by the Company subject to its General Conditions of Service (www.sgs.com/en/Terms-and-Conditions.aspx). Attention is drawn to the limitations of liability, indemnification and jurisdictional issues established therein.

This document is to be treated as an original within the meaning of UCP 600. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

Page N°: 2/7

3. Determination of characteristics of hygroscopic moisture was performed in accordance with GOST 8719-90 with results as follows:

Hygroscopic moisture: 2.02

4. Determination of characteristics of plastic layer was performed in accordance with GOST 1186-87 with results as follows:

Attribute	Unit	Value
X	mm	19.0
ALY SELECTION	mm	0.0

5. Ultimate analysis was performed in accordance with ISO methods with results as follows:

Element	Percentage, % Dry Ash Free basis	Test's methods	
Carbon	90.33	ISO 625-96 (GOST 2408.1-95),	
Hydrogen	4.11	ISO 609-96 (GOST 2408.4-98)	
Nitrogen	2.31	ISO 333-83 (GOST 28743-95)	
Oxygen	3.01	ISO 1994-76 (GOST 2408.3-95)	

6. Determination of chemical composition of ash was performed in accordance with ASTM D 3682-87 (GOST 10538-87) methods with results as follows:

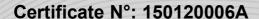
Compounds	Percentage, %
Silicon dioxide	46.37
Alumina	20.75
Iron trioxide	10.33
Titanium dioxide	0.75
Calcium oxide	10.05
Magnesium oxide	4.40
Potassium oxide	1.492
Sodium oxide	0.296
Sulphur trioxide	4.780
Phosphorus oxide	0.558
Manganese oxide	0.224

SGS Vostok Limited

312-24, Ordzhonikidze Street, 654005 Novokuznetsk

Russian Federation

t: +7 3843 39 16 81, 39 16 82, 39 16 83 f: +7 3843 39 12 42


e: ru.novokuznetsk@sgs.com

Member of SGS Group

www.ru.sgs.com

This document is issued by the Company subject to its General Conditions of Service (www.sgs.com/en/Terms-and-Conditions.aspx). Attention is drawn to the limitations of liability, indemnification and jurisdictional issues established therein.

This document is to be treated as an original within the meaning of UCP 600. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

Page N°: 3/7

7. Determination of elements' content was performed in accordance with ISO and ASTM methods with results as follows:

TCSUITS as IOIIOWS.	0.5	
Compounds	Percentage, %	Test's methods
Fluorine	0.0081	ASTM D 3761-96
Chlorine	0.013	ISO 587-97 (GOST 9326-2002)
Arsenic	< 0.0005	ISO 601-81, ISO 2590-73 (GOST 10478- 93)
Phosphorous	0.020	ISO 662-81 (GOST 1932-93)

8. Determination of free swelling Index was performed in accordance with ISO 501-81 (GOST 20330-91) with results as follows:

FSI 0.5

9. Determination of Grey-King coke type was performed in accordance with ISO 502-82 (GOST 16126-91) with results as follows:

GREY-KING COKE TYPE B

10. Determination of Roga Index was performed in accordance with ISO 335-74 (GOST 9318-91) with results as follows:

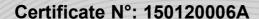
RI 14(2:4)

11. Determination of plasticity according to Gieseler was performed in accordance with ASTM D 2639-98 with results as follows:

Attribute	Unit	Value	
Initial softening Temperature	°C	408	
Max. Fluidity Temperature	₀ C	429	
Resolidification Temperature	°C	476	
Max. fluidity	ddpm	4	

SGS Vostok Limited

312-24, Ordzhonikidze Street, 654005 Novokuznetsk


Russian Federation

t: +7 3843 39 16 81, 39 16 82, 39 16 83 f: +7 3843 39 12 42

e: ru.novokuznetsk@sgs.com

www.ru.sgs.com Member of SGS Group This document is issued by the Company subject to its General Conditions of Service (www.sgs.com/en/Terms-and-Conditions.aspx). Attention is drawn to the limitations of liability, indemnification and jurisdictional issues established therein.

This document is to be treated as an original within the meaning of UCP 600. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

Page N°: 4/7

12. Audiber-Arnu Dilatometer test was performed in accordance with ISO 349-75 (GOST 13324-94) with results as follows:

Attribute	Unit	Value
Softening Temperature	°C	369.5
Max. Contraction Temperature	°C	482.4
Max. Dilatation Temperature	design sees of the	Part Carlo
Contraction	%	-4.7
Dilatation	%	0508-0504-0504-0505

13. Determination of Hardgrove Index was performed in accordance with ISO 5074-80 (GOST 15489.2-93) with results as follows:

HGI 70

14. Determination of actual density was performed in accordance with GOST 2160-92 with results as follows:

AD 1.41 g/cm³

15. Determination of ash fusibility was performed in accordance with ASTM D1857-87. The reported results are as follows:

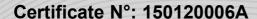
GEOSCISCOSCI	Continued of the said	Value		
Attribute	Unit	Oxiding	Reducing	
Initial deformation temperature	°C	1261	1195	
Softening temperature	°C	1275	1209	
Hemispherical temperature	°C	1286	1220	
Fluid temperature	°C	1350	1270	

16. Determination of petrographic composition and metamorphism stage was performed in accordance with ISO 7404 with results as follows:

Composition Coal		Percentage, %
Mineral inclusions	Quartz	
	Sulphide	•
	Carbonate	1

SGS Vostok Limited

312-24, Ordzhonikidze Street, 654005 Novokuznetsk


Russian Federation

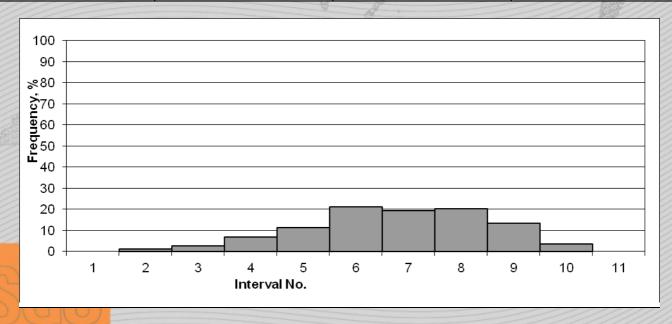
t: +7 3843 39 16 81, 39 16 82, 39 16 83 f: +7 3843 39 12 42

e: ru.novokuznetsk@sgs.com

www.ru.sgs.com Member of SGS Group This document is issued by the Company subject to its General Conditions of Service (www.sgs.com/en/Terms-and-Conditions.aspx). Attention is drawn to the limitations of liability, indemnification and jurisdictional issues established therein.

Indemnification and jurisdictional issues established therein. This document is to be treated as an original within the meaning of UCP 600. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

Page N°: 5/7


5. Microlythotype:

Microconstituent	Percentage, %		
Vitrinite	27		
Semivitrinite	15		
Inertinite	58		
Liptinite	Page 100 to 100		

Sum of the fusainized components **ΣΟΚ 68 %**

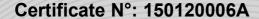
Rank III -IV

Interval No.	Ro min	Ro max	Frequency, %
(55-50-50-50-50-50-50-50-50-50-50-50-50-5	0.90	0.94	
2	0.95	0.99	50500000000000000000000000000000000000
3 3 3 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	1.00	1.04	3
4	1.05	1.09	1094 1094 1050
5	1.10	1.14	11
6.55555555555	1.15	1.19	21
90,9050,5050,5030,505 C 7,5050,5050,505	1.20	1.24	19
8505050505050 850505050505050	1.25	1.29	20
95030305050 50	1.30	1.34	14
10 050505	1.35	1.39	4
11	1.40	1.44	

SGS Vostok Limited

312-24, Ordzhonikidze Street, 654005 Novokuznetsk

Russian Federation


t: +7 3843 39 16 81, 39 16 82, 39 16 83 f: +7 3843 39 12 42

e: ru.novokuznetsk@sgs.com

www.ru.sgs.com

Member of SGS Group

This document is issued by the Company subject to its General Conditions of Service (www.sgs.com/en/Terms-and-Conditions.aspx). Attention is drawn to the limitations of liability, indemnification and jurisdictional issues established therein. This document is to be treated as an original within the meaning of UCP 600. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

Page N°: 6/7

Reflectance indices Ro:

Average		1.21	
Minimum	2.4	0.95	
Maximum	000	1.40	
Standard deviation	Ser.	0.087	
Quantity of scissions	4052.0 24.9505030	0	

II. ANALYSES WERE PERFORMED IN SUBCONTRACTED LABORATORY:

The sample was sent to subcontracted laboratory OAO "Zapadno-Sibirski Ispytatelny Centr" (Accreditation Certificate No. POCC RU.0001.21 AЯ 07) for analysis, and the findings reported by OAO "Zapadno-Sibirski Ispytatelny Centr" were as follows:

1. Determination of elements' content was performed in accordance with GOST methods with results as follows:

Compounds	Percentage, %
Germanium	0.0001
Selenium	<0.05*10-4
Gallium	0.0003
Mercury	0.03*10-4

2. Determination of elements' content was performed in accordance with GOST methods with results as follows:

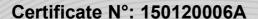
O TO THE PARTY					
Element	Content,%	Element	Content,%	Element	Content,%
Ва	0.02	Cd	<0.001	Pb	<0.0002
Ве	0.0001	Со	<0.0001	Ag	<0.00001
В	0.003	Li	<0.001	Sc	0.0002
Bi	<0.0002	La	0.001	Sr	0.04
V	<0.001	Mn	0.004	Sb	<0.002
W	<0.002	Cu	<0.0001	Ti	0.03
Yb	<0.0001	Mo	<0.0001	Р	<0.1
Y	0.001	As	<0.01	Cr	<0.001
Nb	<0.001	Ni sono de la constante de la	<0.0001	Ce	<0.02
Sn	<0.0002	Zr	0.003		
Zn	< 0.003				

3. Determination of ash fusibility was performed in accordance with ISO 540-81(GOST 2057-94) with results as follows:

Attribute	Unit	Value / atmosphare
Attribute	J.III	Semireducing

SGS Vostok Limited

312-24, Ordzhonikidze Street, 654005 Novokuznetsk


Russian Federation

t: +7 3843 39 16 81, 39 16 82, 39 16 83 f: +7 3843 39 12 42

e: ru.novokuznetsk@sgs.com

www.ru.sgs.com Member of SGS Group This document is issued by the Company subject to its General Conditions of Service (www.sgs.com/en/Terms-and-Conditions.aspx). Attention is drawn to the limitations of liability, indemnification and jurisdictional issues established therein.

Indemnification and jurisdictional issues established therein. This document is to be treated as an original within the meaning of UCP 600. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

Page N°: 7/7

Initial deformation temperature	°C	1230
Softening temperature	°C	1250
Hemispherical temperature	°C	1270
Fluid temperature	°C	1280

This document is a witness of services in collection and processing of information rendering.

Signed and dated in Novokuznetsk / ES 20 January 2015

For and on behalf of SGS Vostok Limited

SGS Vostok Limited

312-24, Ordzhonikidze Street, 654005 Novokuznetsk **Russian Federation**

t: +7 3843 39 16 81, 39 16 82, 39 16 83 f: +7 3843 39 12 42 e: ru.novokuznetsk@sgs.com

www.ru.sgs.com

Member of SGS Group

This document is issued by the Company subject to its General Conditions of Service (www.sgs.com/en/Terms-and-Conditions.aspx). Attention is drawn to the limitations of liability, indemnification and jurisdictional issues established therein.

This document is to be treated as an original within the meaning of UCP 600. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.